Activation of nuclear factor (erythroid-2 like) factor 2 by toxic bile acids provokes adaptive defense responses to enhance cell survival at the emergence of oxidative stress.
نویسندگان
چکیده
Oxidative stress, causing necrotic and apoptotic cell death, is associated with bile acid toxicity. Using liver (HepG2, Hepa1c1c7, and primary human hepatocytes) and intestinal (C2bbe1, a Caco-2 subclone) cells, we demonstrated that toxic bile acids, such as lithocholic acid (LCA) and chenodeoxycholic acid, induced the nuclear factor (erythroid-2 like) factor 2 (Nrf2) target genes, especially the rate-limiting enzyme in glutathione (GSH) biosynthesis [glutamate cysteine ligase modulatory subunit (GCLM) and glutamate cysteine ligase catalytic subunit (GCLC)] and thioredoxin reductase 1. Nrf2 activation and induction of Nrf2 target genes were also evident in vivo in the liver of CD-1 mice treated 7 to 8 h or 4 days with LCA. Silencing of Nrf2 via small-interfering RNA suppressed basal and bile acid-induced mRNA levels of the above-mentioned genes. Consistent with this, overexpression of Nrf2 enhanced, but dominant-negative Nrf2 attenuated, Nrf2 target gene induction by bile acids. The activation of Nrf2-antioxidant responsive element (ARE) transcription machinery by bile acids was confirmed by increased nuclear accumulation of Nrf2, enhanced ARE-reporter activity, and increased Nrf2 binding to ARE. It is noteworthy that Nrf2 silencing increased cell susceptibility to LCA toxicity, as evidenced by reduced cell viability and increased necrosis and apoptosis. Concomitant with GCLC/GCLM induction, cellular GSH was significantly increased in bile acid-treated cells. Cotreatment with N-acetyl-l-cysteine, a GSH precursor, ameliorated LCA toxicity, whereas cotreatment with buthionine sulfoximine, a GSH synthesis blocker, exacerbated it. In summary, this study provides molecular evidence linking bile acid toxicity to oxidative stress. Nrf2 is centrally involved in counteracting such oxidative stress by enhancing adaptive antioxidative response, particularly GSH biosynthesis, and hence cell survival.
منابع مشابه
Inhibition of nuclear factor-erythroid 2–related factor (Nrf2) by caveolin-1 promotes stress-induced premature senescence
Reactive oxygen species (ROS) can induce premature cellular senescence, which is believed to contribute to aging and age-related diseases. The nuclear erythroid 2 p45-related factor-2 (Nrf2) is a transcription factor that mediates cytoprotective responses against stress. We demonstrate that caveolin-1 is a direct binding partner of Nrf2, as shown by the binding of the scaffolding domain of cave...
متن کاملMolecular basis of electrophilic and oxidative defense: promises and perils of Nrf2.
Induction of drug-metabolizing enzymes through the antioxidant response element (ARE)-dependent transcription was initially implicated in chemoprevention against cancer by antioxidants. Recent progress in understanding the biology and mechanism of induction revealed a critical role of induction in cellular defense against electrophilic and oxidative stress. Induction is mediated through a novel...
متن کاملThe Interplay Between Peroxiredoxin-2 and Nuclear Factor-Erythroid 2 Is Important in Limiting Oxidative Mediated Dysfunction in β-Thalassemic Erythropoiesis.
AIMS β-Thalassemia is a common inherited red cell disorder characterized by ineffective erythropoiesis and severe oxidative stress. Peroxiredoxin-2 (Prx2), a typical 2-cysteine peroxiredoxin, is upregulated during β-thalassemic erythropoiesis, but its contribution to stress erythropoiesis, a common feature of thalassemia, is yet to be fully defined. RESULTS Here, we showed that Prx2(-/-) mice...
متن کاملOxidative Stress Responses and NRF2 in Human Leukaemia
Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently been identif...
متن کاملEndoplasmic reticulum, oxidative stress and their complex crosstalk in neurodegeneration: proteostasis, signaling pathways and molecular chaperones
Cellular stress caused by protein misfolding, aggregation and redox imbalance is typical of neurodegenerative disorders such as Parkinson’s disease (PD) and Amyotrophic Lateral Sclerosis (ALS). Activation of quality control systems, including endoplasmic reticulum (ER)-mediated degradation, and reactive oxygen species (ROS) production are initially aimed at restoring homeostasis and preserving ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 72 5 شماره
صفحات -
تاریخ انتشار 2007